Architecture Description Languages
- Representing Embedded Systems

SNART Presentation August 2009
Henrik Lönn/Cecilia Ekelin
VTEC within the Volvo Group
Outline

- Motivation
- Overview of modelling approaches
- EAST-ADL2
- MARTE
Motivation

Challenges in engineering automotive embedded systems:

- **Product Related Challenges**
 - Functionality increase
 - Complexity increase
 - Increased Safety-criticality
 - Quality concerns

- **Challenges Related to Development Process**
 - Supplier-OEM relationship
 - Multiple sites & departments
 - Product families
 - Componentization
 - Separation of application from infrastructure
 - Safety Requirements, ISO 26262
Representation Needs

- Engineering information must be precise and complete
- Separation of need and solution
- Models should distinguish between abstraction levels
 - Separation of Concerns
 - Early System Integration
- Integrated Information Handling
 - Effective Documentation management
 - Traceability
 - Tool Integration
- Model Based Development
 - Simulation
 - Analysis
 - Synthesis
A Selection of Modelling Technologies

- AADL – Aerospace domain, SW centric ADL
- Autosar – Automotive standard for SW platform and representation
- CCM – Component Model for CORBA
- EAST-ADL – Automotive ADL for System level modelling and down
- SysML – UML profile supporting generic systems engineering needs
- MARTE – UML profile for real-time embedded systems
- SAVE CCM – Software-centric automotive component model
- SPEEDS HRC – Development approach using existing standards/tools
- TADL – Formalizing timing requirement for the automotive domain
- ….. WRIGHT, ACME, EEA AIL, Titus, HRT-HOOD,
EAST-ADL2 and MARTE

- Architecture Description Language, ADL
 - Wikipedia: “computer language used to describe software and/or system architectures”
- EAST-ADL is and ADL that seek to cover the engineering information related to Automotive Electronics/Software development
- MARTE provides UML constructs to support the development of real-time and embedded systems
EAST-ADL2 Characteristics

- A system model organized in submodels on 5 abstraction levels
- The contents on an abstraction level forms a complete representation of the vehicle embedded system, with respect to the concerns of that abstraction level
- The EAST-ADL2 model is information integration: a structural representation of the vehicle EE system relying on several external tools and models (depending on company, vehicle domain, modellig purpose, etc.)
EAST-ADL Structure

- **Vehicle Level**
 - Feature content in a VehicleFeatureModel

- **Analysis Level**
 - Functional Analysis Architecture capturing the abstract functional behavior

- **Design level**
 - Hardware entities/topology
 - Concrete Functional structure & behavior
 - Function-to-ECU allocation

- **Implementation Level**
 - AUTOSAR constructs

![Diagram of EAST-ADL Structure]

Data exchange over ports
Principle of Realization

- Entities on lower abstraction level realizes Entities on higher abstraction level

Vehicle Level
Analysis Level
Design Level
Implementation Level
Operational Level
EE Architecture

Volvo Technology
6200, Henrik Lönn/Cecilia Ekelin
10 August 2009
Vehicle Feature Model

- A Vehicle is given by a set of Features
- Features are *stakeholder* requested functional or non-functional characteristics of a vehicle
- A Feature describes that "what", but shall not fix the "how"
- A Feature might be refined by further requirements
- From a top-down architecture approach the features are the configuration points to create a vehicle variant
Analysis Architecture

- Functional description of the EE system is found on Analysis and Design Level
 - The Analysis Architecture captures the abstract functional definition while avoiding implementation details
 - Analysis Architecture defines the system boundary
 - Realizes the functions based on the feature, the environment model, the requirements and stakeholders
 - The analysis level is purely functional, no designs or implementations are considered at this stage
 - Basis for safety analysis
Design Architecture

- The Design Architecture captures the concrete functional definition with a close correspondence with the final implementation
 - differentiation between the functionality realized by HW, middleware and SW
 - Functional Design Architecture is the functional definition of application software
 - Function-to-hardware allocation is defined
Implementation Architecture

- The Implementation Architecture represents the software-based implementation of the system
 - Functional blocks are realized by software components
 - Abstract hardware architecture is realized by hardware components
- AUTOSAR is used to capture the implementation
 - The application software architecture is defined according to AUTOSAR software component template
 - The software platform is defined in line with the AUTOSAR basic software
 - The hardware is defined according to the AUTOSAR ECU and topology elements.
Traceability between abstraction levels

- ADLRealization relations identify which abstract element is realized by a more concrete entity

Functions on analysis level realizes features on vehicle level

Functions on design level realizes functions on analysis level

SW components or runnables on implementation level realizes functions on design level

Data exchange over ports
Plant Model

- The plant model is visualized as a single, global entity in the system model.
- Structurally, it is contained inside each of the “architectures”.
- Although there is one occurrence in each architecture one typically use the same type definition for each
Cross-cutting aspects

• EAST-ADL supports
 – Variability
 – Requirements
 – Verification and Validation
 – Safety
 – Error propagation
Function interactions – end-to-end

- Model structure supports interaction with the environment and end-to-end functional definitions.
Hardware Design Architecture

Hardware architecture to allow hardware design and functional allocation or of HW entities defined for end-to-end function analysis.

- Analysis Level
 - Analysis Architecture
 - Functional Analysis Architecture
 - Design Architecture
 - Functional Design Architecture
 - Middleware Abstraction
 - Hardware Design Architecture
- Implementation Level
 - Implementation Architecture
 - AUTOSAR System
- Operational Level
 - Operational Architecture

Volvo Technology
6200, Henrik Lönn/Cecilia Ekelin
19 August 2009
EAST-ADL2 Complements AUTOSAR

- EAST-ADL2 is an information structure including aspects beyond the Software Architecture
 - Requirements, traceability, feature content, variability, safety, etc.
- Provides means to define what the software does
 - An AUTOSAR specification defines the software architecture and information required for SW integration - but is neutral to its functionality
- Provides means to model strategic properties
 - Key vehicle aspects is captured independently of the software architecture
- Supports modelling of error behavior and the representation of safety-related information and requirements
EAST-ADL2 – AUTOSAR Mapping
The MARTE UML2 profile

- UML profile supporting development of Real-Time and Embedded systems
- Focus on Components and Non-functional properties
- In the process of OMG standardization (V1.0 in 2009)
- Annexes in MARTE describe the mappings to EAST-ADL and AADL
- MARTE is extensive and highly complex
MARTE Characteristics

MARTE define the language constructs only!

- Common patterns, basic building blocks, standard NFP annotations
- Generic constraints that do not force specific execution models, analysis techniques or implementation technologies

It does not cover methodologies aspects:

- Interface-Based Design, Design Space Exploration
- Means to manage refinement of NFP measurement models
- Concrete processes to storage, bind, and display NFP context models
- Mapping to transform MoCCs into analysis
MARTE Contents

UML Profile with stereotypes in 3 packages:

- **Foundations** for RT/E systems modeling and analysis:
 - Core Elements
 - Non functional properties, NFPs
 - Time
 - Generic resource modeling
 - Generic component modeling
 - Allocation

- Constructs for specification and **design**:
 - RTE model of computation and communication
 - Software resource modeling
 - Hardware resource modeling

- Constructs for annotating model for **analysis**:
 - Generic quantitative analysis
 - Schedulability analysis
 - Performance analysis
1-2-3 Use of MARTE

MARTE is to the RTES domain as UML to the System & Software domain: a family of large and open specification formalisms!

1. In the context of a UML model
 …which may be an EAST-ADL2, AADL, AUTOSAR, etc. model…
2. Apply MARTE profile and assign MARTE stereotypes to UML elements

3. MARTE now provides RTES-relevant constructs and a semantics for a proper meaning of the model. An agreed interpretation of the model is now possible, and also the use of MARTE-compliant analysis and synthesis tools
MARTE Example

- Structural model and its sequence diagram with timing annotations
- UML model with MARTE stereotypes and graphical appearance
- MARTE events and constraints define the temporal properties
MARTE Example 2

- Allocation of application to OS to HW
Finally….

- System Modeling is a necessary approach to master challenges of embedded systems development
 - Complexity, Safety, Lead times, Communication, Separation of concerns, …
- EAST-ADL is an Architecture Description Language that seeks to cover a relevant set of modelling concepts for automotive embedded systems, complementary to AUTOSAR
- MARTE provides building blocks for UML-based modelling of Real-Time and Embedded Systems